
Denis Legezo, Lead Security Researcher, Kaspersky

A new stash for 
fileless malware



Plan for the next 40 minutes

l Typical logging… and shellcodes

l Why not to combine them?

l Anti-detect techniques

l Several last stagers

l Third-party tools



Typical logging

• Developers use print-like debugging

• Keep debug removing as TODO

• Operators want to check execution 
flaw

• Which stages were successful



..and shellcodes

• Position independent

• Leads to get self RVA tricks

• Loader independent

• Leads to PEB and PE parsing

• Hashes instead of func names



Why not to combine?

• Windows event logs (.evtx) could 
contain binary data

• It’s a legit mechanism

• Drivers write minidumps where, etc.

• Looks like a place for shellcodes as 
well



Show me the code



Read and put into container



What about writing them



Inside the shellcode



Bird eye view

l Throwback trace is visible

l Go, gcc, even Nim compilers

l Named pipes for LAN

l HTTP-based for remote





Third-party tools

• Free and commercial

• Github usage all the time

• Two commercial suites 
simultaneously aren’t typical



Typical Blackbone trampoline



Anti-detection

l Patching

l Sideloading

l Digital certificate

l Esoteric compilers



Patching

• Authors like only their logs

• EtwNotificationRegister, 
EtwEventRegister, etc. are patched 
to return(0)

• AMSI-related functions are patched 
either

• This part is commodity already



Go wrapper for Cobalt



And patching with Go



Several last stagers

l Passive version

l Love for injection

l “Is user active now?”

l Sleep time randomization



HTTP trojan version

l Random C2 from the list

l MachineGUID, SeDebugPrivilege 
among the fingerprinting of target

l Throwback-like encryption

l Short command system



Pipes trojan version

l Monolith named pipe

l Hardcoded RC4 key

l More profound command system

l HTTP version with such commands 
also exists





Questions time!

• Denis Legezo

• @legezo


